
Container and Serverless Security
Cloud Security

What we will be covering today
• Our Journey

• Benefits of Serverless and Containers

• Comparison of Tech Stacks

• Containers: What are Containers and their Use Cases

• Container Overview

• Risks

• Securing Containers

• Serverless Architecture: Use cases

• Serverless Overview

• Risks

• Securing Serverless Architectures

• Auditing Considerations

• DevOps / SecDevOps

• Devops Overview

• Example: How to Implement DevOps

Our Journey

• Built and managed Data Centers supporting
our product

• Lots of scale up problems, led to adoption of
very expensive esoteric parallel processing
hardware (Netezza, Terradata, Exadata)

• Transitioned to scale out architectures using
open source (Hadoop, HBase) and various
virtualization technologies (VMware)

• Cloud Revolution!

• Clients started to demand Cloud-based Solutions

• Adoption of Severless and PaaS capabilities
(EMR, Lambda)

• Adoption of Container capabilities (Docker,
ECS, EKS, GKE)

Benefits of Serverless and Containers

• Rapid Deployment – Can be up and
running in minutes

• Flexible – Supports wide array of use cases
with common tech

• Scalable - Can expand and contract quickly

• Cost effective - You only pay for the time
you are using the technology

• Portability – Can move workloads easily

• Availability – Inherently

• Use Case – Netflix (Discussion)

• Shifts a datacenter cost model from Capex
to Opex

• Fewer things to patch (multiple containers
can be sun up from a single image)

Compare Legacy/Container/Serverless

Legacy Servers Containers Serverless

Rapid Deployment No Yes Yes

Flexible No Yes Yes

Easy to deploy DR No Yes Yes

Easily Monitored Yes No No

Easily Scalable No Yes Yes

Native Security No No Yes

Cost Model Capex Opex Opex

What are Containers and their Use Cases?

• Containers are a portable and lightweight way to package
and run software

• Containers use a containerization engine or runtime, such
as Docker or LXD to create and manage the container
environment.

• Containers are based on images or pre-configured
templates that define an application environment

• Containers can be easily moved between environments
without changing underlying infrastructure

• Containers are widely used in modern application
development and deployment, especially in cloud-native
and microservices architectures

Containers – Risks

• Vulnerabilities can hide in containers

• Example

• Ensure you have visibility into your
containers, know what is running,
know the versions and vulnerability
status

• Traditional tooling may not work for
containers (Specifically security and
monitoring tools)

• Moving to a container model means
you need to change your Security
model and adopt new tech that is
adapted for this technology stack

Securing Containers

• Secure Container Runtime

• Isolate containers in separate networks to reduce the
attack surface

• Only expose ports that are required (Ex: HTTPS, SSH)

• If using Docker leverage the Image policy plugin

• Secure the Container Deployment

• Only use immutable deployments

• Ensure the underlying Host OS is secured and patched

• Leverage an Orchestration platform that provides role-
based access control

• Secure Container Images

• Remove all components not in use by the container (Ex:
curl, ps, awk). Do not give an attacker leverage

• Use known good images from known good repositories or
create your own image. Places like Docker Hub can
provide secure images

Serverless Architectures and Use Cases

• Technologies for running code,
managing data and integrating
applications without managing servers

• Highly scalable up and down (even
scale to zero)

• Reduces traditional infrastructure
management

• Generally lower cost but deployment
models, scaling setting and usage has
to be monitored

Serverless Risks

• Misconfigurations

• Ensure that your baseline configuration
is checked before moving to production

• Broken Authentication

• Microservices manage internal auth

• Over Privileged Functions

• Ensure you leverage a least privilege
model

• Injection Attacks

• Ensure you are SAST and DAST
scanning your code

• Logging and Monitoring

Securing Serverless Architectures

• Secure Coding is the baseline for all serverless deployments

• Ensure that input validation is in place before calls are
processed,

• Secure your API’s, leverage an API gateway where
possible

• Encrypt all data at Rest and in Transit, ensure you encrypt
internal communication channels as well as external

• Log all server functions to an immutable location external
to the instance (SIEM)

• Implement strong authentication and leverage things like
OAuth, SAML, and MFA

• Create separate Production and Development environments

• Prioritize vulnerability management and react quickly to
High and Critical vulnerabilities

Auditing Considerations

Both Serverless and Containers have
Auditing considerations that you need to
be aware of

1. Traditional audit tooling may not be
appropriate or give you an accurate
view of your risks

2. Due to the nature of this tech it is
recommended that you perform
internal audits quarterly to ensure
your deployments are operating as
expected and are secured to meet
your policy. This can be automated

3. Leverage cloud native tools like AWS
inspector and ECR scanning where
possible, pull and review reports
often

DevOps/DevSecOps Overview

While there is no single definition all can agree on for DevOps, there are
some widely accepted thoughts / concepts:

• Think of DevOps as a collaboration combining tools, processes, and
philosophies to increase a team’s speed at delivering solutions and
services.

• DevOps can be viewed as Product Management, Development, IT
Operations, and even Information Security all working together and
supporting one another.

• Do not think of DevOps as a new role or specific job title, but rather as a
new way of working to foster a core framework aimed at achieving the
best possible products/solutions/services

• DevOps also standardizes work across all parts of the team by using
similar tools and techniques up and down the stack. An example would be
that the Ops team would define infrastructure as Code using the
same SCM systems the developers are using.

• Many would say that DevOps is a blend of Agile product management and
philosophies such as lean thinking (especially when we talk about
Continuous Delivery)

DevOps/DevSecOps Benefits

Using the DevOps Culture/Model, groups that are normally
siloed are brought together to create a more unified team
that works across the lifecycle of the solution or service.
This team should include security and quality assurance
members to produce a number of benefits:

• Faster Delivery – Features and bug fixes can be tested,
validated and deployed quicker than ever

• Reliability – Now that Dev and Ops are collaborating,
technical decisions can be solved early allowing for a
solution/service to be more reliable. This is also where
automation and CI/CD shine as they are the core
framework that drives reliability.

• Security - Inclusion of Ops and Security from the
beginning allows the overall team to focus on security
as the lifecycle of the solution/service grows.

• Collaboration and Planning - Frequent cadence
communication creates more collaboration. Heavy use of
Agile principles and work management models including
Scrum and Kanban are prevalent

How to implement a DevSecOps Model
• Continuous Integration is the process of regularly taking committed changes from a central repository and running them through

automated builds and test.

• Developers commit to shared repository

• Code is scanned for vulnerabilities, common mistakes, duplicative code, etc

• CI service automatically builds new code

• CI service potentially tests code

• Continuous Delivery is the process by which all results of the CI process(code changes, artifacts, etc.) are built and delivered to a
useable repository. Continuous Deployment will take the built and tested artifacts and deploy them to a testing or production
environment.

• Code is deployed for testing post build

• Sets stage for further testing (automated or manual)

• Discover issues before moving into production

• A CI/CD Pipeline automates the entire process

Q&A

	Slide 1: Container and Serverless Security
	Slide 2: What we will be covering today
	Slide 3: Our Journey
	Slide 4: Benefits of Serverless and Containers
	Slide 5: Compare Legacy/Container/Serverless
	Slide 6: What are Containers and their Use Cases?
	Slide 7: Containers – Risks
	Slide 8: Securing Containers
	Slide 9: Serverless Architectures and Use Cases
	Slide 10: Serverless Risks
	Slide 11: Securing Serverless Architectures
	Slide 12: Auditing Considerations
	Slide 13: DevOps/DevSecOps Overview
	Slide 14: DevOps/DevSecOps Benefits
	Slide 15: How to implement a DevSecOps Model
	Slide 16: Q&A

